3.1319 \(\int \frac{x^7}{a+b x^6} \, dx\)

Optimal. Leaf size=133 \[ \frac{\sqrt [3]{a} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x^2+b^{2/3} x^4\right )}{12 b^{4/3}}-\frac{\sqrt [3]{a} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x^2\right )}{6 b^{4/3}}+\frac{\sqrt [3]{a} \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x^2}{\sqrt{3} \sqrt [3]{a}}\right )}{2 \sqrt{3} b^{4/3}}+\frac{x^2}{2 b} \]

[Out]

x^2/(2*b) + (a^(1/3)*ArcTan[(a^(1/3) - 2*b^(1/3)*x^2)/(Sqrt[3]*a^(1/3))])/(2*Sqrt[3]*b^(4/3)) - (a^(1/3)*Log[a
^(1/3) + b^(1/3)*x^2])/(6*b^(4/3)) + (a^(1/3)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x^2 + b^(2/3)*x^4])/(12*b^(4/3))

________________________________________________________________________________________

Rubi [A]  time = 0.122431, antiderivative size = 133, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.615, Rules used = {275, 321, 200, 31, 634, 617, 204, 628} \[ \frac{\sqrt [3]{a} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x^2+b^{2/3} x^4\right )}{12 b^{4/3}}-\frac{\sqrt [3]{a} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x^2\right )}{6 b^{4/3}}+\frac{\sqrt [3]{a} \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x^2}{\sqrt{3} \sqrt [3]{a}}\right )}{2 \sqrt{3} b^{4/3}}+\frac{x^2}{2 b} \]

Antiderivative was successfully verified.

[In]

Int[x^7/(a + b*x^6),x]

[Out]

x^2/(2*b) + (a^(1/3)*ArcTan[(a^(1/3) - 2*b^(1/3)*x^2)/(Sqrt[3]*a^(1/3))])/(2*Sqrt[3]*b^(4/3)) - (a^(1/3)*Log[a
^(1/3) + b^(1/3)*x^2])/(6*b^(4/3)) + (a^(1/3)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x^2 + b^(2/3)*x^4])/(12*b^(4/3))

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 200

Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Dist[1/(3*Rt[a, 3]^2), Int[1/(Rt[a, 3] + Rt[b, 3]*x), x], x] + Di
st[1/(3*Rt[a, 3]^2), Int[(2*Rt[a, 3] - Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x]
 /; FreeQ[{a, b}, x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{x^7}{a+b x^6} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{x^3}{a+b x^3} \, dx,x,x^2\right )\\ &=\frac{x^2}{2 b}-\frac{a \operatorname{Subst}\left (\int \frac{1}{a+b x^3} \, dx,x,x^2\right )}{2 b}\\ &=\frac{x^2}{2 b}-\frac{\sqrt [3]{a} \operatorname{Subst}\left (\int \frac{1}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx,x,x^2\right )}{6 b}-\frac{\sqrt [3]{a} \operatorname{Subst}\left (\int \frac{2 \sqrt [3]{a}-\sqrt [3]{b} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,x^2\right )}{6 b}\\ &=\frac{x^2}{2 b}-\frac{\sqrt [3]{a} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x^2\right )}{6 b^{4/3}}+\frac{\sqrt [3]{a} \operatorname{Subst}\left (\int \frac{-\sqrt [3]{a} \sqrt [3]{b}+2 b^{2/3} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,x^2\right )}{12 b^{4/3}}-\frac{a^{2/3} \operatorname{Subst}\left (\int \frac{1}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,x^2\right )}{4 b}\\ &=\frac{x^2}{2 b}-\frac{\sqrt [3]{a} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x^2\right )}{6 b^{4/3}}+\frac{\sqrt [3]{a} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x^2+b^{2/3} x^4\right )}{12 b^{4/3}}-\frac{\sqrt [3]{a} \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 \sqrt [3]{b} x^2}{\sqrt [3]{a}}\right )}{2 b^{4/3}}\\ &=\frac{x^2}{2 b}+\frac{\sqrt [3]{a} \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x^2}{\sqrt{3} \sqrt [3]{a}}\right )}{2 \sqrt{3} b^{4/3}}-\frac{\sqrt [3]{a} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x^2\right )}{6 b^{4/3}}+\frac{\sqrt [3]{a} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x^2+b^{2/3} x^4\right )}{12 b^{4/3}}\\ \end{align*}

Mathematica [A]  time = 0.0471379, size = 186, normalized size = 1.4 \[ \frac{-2 \sqrt [3]{a} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x^2\right )+\sqrt [3]{a} \log \left (-\sqrt{3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}+\sqrt [3]{b} x^2\right )+\sqrt [3]{a} \log \left (\sqrt{3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{a}+\sqrt [3]{b} x^2\right )+2 \sqrt{3} \sqrt [3]{a} \tan ^{-1}\left (\sqrt{3}-\frac{2 \sqrt [6]{b} x}{\sqrt [6]{a}}\right )+2 \sqrt{3} \sqrt [3]{a} \tan ^{-1}\left (\frac{2 \sqrt [6]{b} x}{\sqrt [6]{a}}+\sqrt{3}\right )+6 \sqrt [3]{b} x^2}{12 b^{4/3}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^7/(a + b*x^6),x]

[Out]

(6*b^(1/3)*x^2 + 2*Sqrt[3]*a^(1/3)*ArcTan[Sqrt[3] - (2*b^(1/6)*x)/a^(1/6)] + 2*Sqrt[3]*a^(1/3)*ArcTan[Sqrt[3]
+ (2*b^(1/6)*x)/a^(1/6)] - 2*a^(1/3)*Log[a^(1/3) + b^(1/3)*x^2] + a^(1/3)*Log[a^(1/3) - Sqrt[3]*a^(1/6)*b^(1/6
)*x + b^(1/3)*x^2] + a^(1/3)*Log[a^(1/3) + Sqrt[3]*a^(1/6)*b^(1/6)*x + b^(1/3)*x^2])/(12*b^(4/3))

________________________________________________________________________________________

Maple [A]  time = 0.004, size = 108, normalized size = 0.8 \begin{align*}{\frac{{x}^{2}}{2\,b}}-{\frac{a}{6\,{b}^{2}}\ln \left ({x}^{2}+\sqrt [3]{{\frac{a}{b}}} \right ) \left ({\frac{a}{b}} \right ) ^{-{\frac{2}{3}}}}+{\frac{a}{12\,{b}^{2}}\ln \left ({x}^{4}-\sqrt [3]{{\frac{a}{b}}}{x}^{2}+ \left ({\frac{a}{b}} \right ) ^{{\frac{2}{3}}} \right ) \left ({\frac{a}{b}} \right ) ^{-{\frac{2}{3}}}}-{\frac{a\sqrt{3}}{6\,{b}^{2}}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{{x}^{2}{\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}-1 \right ) } \right ) \left ({\frac{a}{b}} \right ) ^{-{\frac{2}{3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^7/(b*x^6+a),x)

[Out]

1/2*x^2/b-1/6/b^2*a/(1/b*a)^(2/3)*ln(x^2+(1/b*a)^(1/3))+1/12/b^2*a/(1/b*a)^(2/3)*ln(x^4-(1/b*a)^(1/3)*x^2+(1/b
*a)^(2/3))-1/6/b^2*a/(1/b*a)^(2/3)*3^(1/2)*arctan(1/3*3^(1/2)*(2/(1/b*a)^(1/3)*x^2-1))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(b*x^6+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.67447, size = 266, normalized size = 2. \begin{align*} \frac{6 \, x^{2} + 2 \, \sqrt{3} \left (-\frac{a}{b}\right )^{\frac{1}{3}} \arctan \left (\frac{2 \, \sqrt{3} b x^{2} \left (-\frac{a}{b}\right )^{\frac{2}{3}} - \sqrt{3} a}{3 \, a}\right ) - \left (-\frac{a}{b}\right )^{\frac{1}{3}} \log \left (x^{4} + x^{2} \left (-\frac{a}{b}\right )^{\frac{1}{3}} + \left (-\frac{a}{b}\right )^{\frac{2}{3}}\right ) + 2 \, \left (-\frac{a}{b}\right )^{\frac{1}{3}} \log \left (x^{2} - \left (-\frac{a}{b}\right )^{\frac{1}{3}}\right )}{12 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(b*x^6+a),x, algorithm="fricas")

[Out]

1/12*(6*x^2 + 2*sqrt(3)*(-a/b)^(1/3)*arctan(1/3*(2*sqrt(3)*b*x^2*(-a/b)^(2/3) - sqrt(3)*a)/a) - (-a/b)^(1/3)*l
og(x^4 + x^2*(-a/b)^(1/3) + (-a/b)^(2/3)) + 2*(-a/b)^(1/3)*log(x^2 - (-a/b)^(1/3)))/b

________________________________________________________________________________________

Sympy [A]  time = 0.353172, size = 27, normalized size = 0.2 \begin{align*} \operatorname{RootSum}{\left (216 t^{3} b^{4} + a, \left ( t \mapsto t \log{\left (- 6 t b + x^{2} \right )} \right )\right )} + \frac{x^{2}}{2 b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**7/(b*x**6+a),x)

[Out]

RootSum(216*_t**3*b**4 + a, Lambda(_t, _t*log(-6*_t*b + x**2))) + x**2/(2*b)

________________________________________________________________________________________

Giac [A]  time = 1.17417, size = 162, normalized size = 1.22 \begin{align*} \frac{x^{2}}{2 \, b} + \frac{\left (-\frac{a}{b}\right )^{\frac{1}{3}} \log \left ({\left | x^{2} - \left (-\frac{a}{b}\right )^{\frac{1}{3}} \right |}\right )}{6 \, b} - \frac{\sqrt{3} \left (-a b^{2}\right )^{\frac{1}{3}} \arctan \left (\frac{\sqrt{3}{\left (2 \, x^{2} + \left (-\frac{a}{b}\right )^{\frac{1}{3}}\right )}}{3 \, \left (-\frac{a}{b}\right )^{\frac{1}{3}}}\right )}{6 \, b^{2}} - \frac{\left (-a b^{2}\right )^{\frac{1}{3}} \log \left (x^{4} + x^{2} \left (-\frac{a}{b}\right )^{\frac{1}{3}} + \left (-\frac{a}{b}\right )^{\frac{2}{3}}\right )}{12 \, b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(b*x^6+a),x, algorithm="giac")

[Out]

1/2*x^2/b + 1/6*(-a/b)^(1/3)*log(abs(x^2 - (-a/b)^(1/3)))/b - 1/6*sqrt(3)*(-a*b^2)^(1/3)*arctan(1/3*sqrt(3)*(2
*x^2 + (-a/b)^(1/3))/(-a/b)^(1/3))/b^2 - 1/12*(-a*b^2)^(1/3)*log(x^4 + x^2*(-a/b)^(1/3) + (-a/b)^(2/3))/b^2